Department of Energy Argonne National Laboratory Office of Science NEWTON's Homepage NEWTON's Homepage NEWTON Teachers
NEWTON, TEACHERS!
NEWTON Home Page Teachers Home Page Teachers Resources Educational Videos Science Projects Field Trip Ideas Reference Links Educational Games Lesson Plans Your Ideas About NEWTON Education At Argonne Blood Flow: Multi-scale Modeling and Visualization
If you have problems viewing this video below, please try refreshing your browser or press F5.

Description:

Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.

This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each blood cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm.

Simulation was performed on Kraken at the National Institute for Computational Sciences.

Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.


Is the video or link broken? Please let us know by emailing, newtonteachers@anl.gov


NEWTON is an electronic community for Science, Math, and Computer Science K-12 Educators, sponsored and operated by Argonne National Laboratory's Educational Programs, Andrew Skipor, Ph.D., Head of Educational Programs.

For assistance with NEWTON contact a System Operator (help@newton.dep.anl.gov), or Argonne's Educational Programs

NEWTON AND ASK A SCIENTIST
Educational Programs
Building 360
9700 S. Cass Ave.
Argonne, Illinois
60439-4845, USA
Update: June 2012
Weclome To Newton

Argonne National Laboratory